If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying n2[n + 1][2n3 + 4n2 + n + -1][n + 6] = 0 Reorder the terms: n2[1 + n][2n3 + 4n2 + n + -1][n + 6] = 0 Reorder the terms: n2[1 + n][-1 + n + 4n2 + 2n3][n + 6] = 0 Reorder the terms: n2[1 + n][-1 + n + 4n2 + 2n3][6 + n] = 0 Multiply [1 + n] * [-1 + n + 4n2 + 2n3] n2[1[-1 + n + 4n2 + 2n3] + n[-1 + n + 4n2 + 2n3]][6 + n] = 0 n2[[-1 * 1 + n * 1 + 4n2 * 1 + 2n3 * 1] + n[-1 + n + 4n2 + 2n3]][6 + n] = 0 n2[[-1 + 1n + 4n2 + 2n3] + n[-1 + n + 4n2 + 2n3]][6 + n] = 0 n2[-1 + 1n + 4n2 + 2n3 + [-1 * n + n * n + 4n2 * n + 2n3 * n]][6 + n] = 0 n2[-1 + 1n + 4n2 + 2n3 + [-1n + n2 + 4n3 + 2n4]][6 + n] = 0 Reorder the terms: n2[-1 + 1n + -1n + 4n2 + n2 + 2n3 + 4n3 + 2n4][6 + n] = 0 Combine like terms: 1n + -1n = 0 n2[-1 + 0 + 4n2 + n2 + 2n3 + 4n3 + 2n4][6 + n] = 0 n2[-1 + 4n2 + n2 + 2n3 + 4n3 + 2n4][6 + n] = 0 Combine like terms: 4n2 + n2 = 5n2 n2[-1 + 5n2 + 2n3 + 4n3 + 2n4][6 + n] = 0 Combine like terms: 2n3 + 4n3 = 6n3 n2[-1 + 5n2 + 6n3 + 2n4][6 + n] = 0 Multiply [-1 + 5n2 + 6n3 + 2n4] * [6 + n] n2[-1[6 + n] + 5n2 * [6 + n] + 6n3 * [6 + n] + 2n4 * [6 + n]] = 0 n2[[6 * -1 + n * -1] + 5n2 * [6 + n] + 6n3 * [6 + n] + 2n4 * [6 + n]] = 0 n2[[-6 + -1n] + 5n2 * [6 + n] + 6n3 * [6 + n] + 2n4 * [6 + n]] = 0 n2[-6 + -1n + [6 * 5n2 + n * 5n2] + 6n3 * [6 + n] + 2n4 * [6 + n]] = 0 n2[-6 + -1n + [30n2 + 5n3] + 6n3 * [6 + n] + 2n4 * [6 + n]] = 0 n2[-6 + -1n + 30n2 + 5n3 + [6 * 6n3 + n * 6n3] + 2n4 * [6 + n]] = 0 n2[-6 + -1n + 30n2 + 5n3 + [36n3 + 6n4] + 2n4 * [6 + n]] = 0 n2[-6 + -1n + 30n2 + 5n3 + 36n3 + 6n4 + [6 * 2n4 + n * 2n4]] = 0 n2[-6 + -1n + 30n2 + 5n3 + 36n3 + 6n4 + [12n4 + 2n5]] = 0 Combine like terms: 5n3 + 36n3 = 41n3 n2[-6 + -1n + 30n2 + 41n3 + 6n4 + 12n4 + 2n5] = 0 Combine like terms: 6n4 + 12n4 = 18n4 n2[-6 + -1n + 30n2 + 41n3 + 18n4 + 2n5] = 0 [-6 * n2 + -1n * n2 + 30n2 * n2 + 41n3 * n2 + 18n4 * n2 + 2n5 * n2] = 0 [-6n2 + -1n3 + 30n4 + 41n5 + 18n6 + 2n7] = 0 Solving -6n2 + -1n3 + 30n4 + 41n5 + 18n6 + 2n7 = 0 Solving for variable 'n'. Factor out the Greatest Common Factor (GCF), 'n2'. n2(-6 + -1n + 30n2 + 41n3 + 18n4 + 2n5) = 0Subproblem 1
Set the factor 'n2' equal to zero and attempt to solve: Simplifying n2 = 0 Solving n2 = 0 Move all terms containing n to the left, all other terms to the right. Simplifying n2 = 0 Take the square root of each side: n = {0}Subproblem 2
Set the factor '(-6 + -1n + 30n2 + 41n3 + 18n4 + 2n5)' equal to zero and attempt to solve: Simplifying -6 + -1n + 30n2 + 41n3 + 18n4 + 2n5 = 0 Solving -6 + -1n + 30n2 + 41n3 + 18n4 + 2n5 = 0 The solution to this equation could not be determined. This subproblem is being ignored because a solution could not be determined.Solution
n = {0}
| 12+3x=x-1 | | 68=x-0.21x | | x-6=4+3 | | 3x+2+2x=22 | | 8=-5-x | | 10p-20=80 | | n^2[n+1][2n^3+4n^2+n-1]=0 | | 67=x-0.38x | | 3x-15+6x+69=180 | | 6x-3x+2x-6=4x | | 12=3z-6 | | 2x+4-7=x-4+6 | | 6x(x+1)+3=5x(x+2) | | x^3+2=2 | | m-15= -8 | | -308=14g | | 4(5x-5)-2x-1 =15 | | 2v+6=8 | | 2r+1=x+5 | | Y=2(n+1) | | 4z^2-28z+49=0 | | 12x^2-21x-8=0 | | 16=10r-8t | | 5=0.25(6x+4) | | t^2+40+13t=0 | | x-x(.10)=181937.58 | | (8-3i)(4+2i)= | | x^2-36=3x-8 | | d+-8=17 | | -x+4x^2+2=x^2-5 | | f=20*1.8+32 | | 1.3x+10x-2.4x-3.6= |